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Abstract 

The use of Commercial Off-The-Shelf (COTS) products in the software development process requires the evaluation 

of existing COTS products, and then selecting the one that best fits system requirements. In this process, it is 

inevitable to encounter mismatches between COTS features and system requirements. Mismatches occur as a result 

of an excess or shortage of COTS capabilities. Many of these mismatches are resolved after selecting a COTS. 

Existing COTS selection approaches fail to properly consider these mismatches. This paper presents MiHOS 

(Mismatch Handling for COTS Selection), an approach that aims at addressing mismatches while considering 

limited resources. MiHOS can be integrated with existing COTS selection methods at two points: (1)When 

evaluating COTS candidates in order to estimate the anticipated fitness of the candidates if their mismatches are 

resolved. This helps to base our COTS selection decisions on the fitness that the COTS candidates will eventually 

have if selected. (2) After selecting a COTS product in order to plan the resolution of the most appropriate 

mismatches using suitable actions, such that the most important risk, technical, and resource constraints are met. A 

case study from the e-services domain is used to illustrate the method and to discuss its added value. 

Keywords: COTS vs. requirements mismatches, MiHOS, COTS-based development. 

1. Introduction and Motivation 

Employing COTS (commercial off-the-shelf) products to develop software systems has the 

potential to reduce development time and effort. The term COTS refers to both commercially 

available and open source products [1] that are reused to build software systems [2,3]. A crucial 

factor in the success of the final system is to perform a good COTS selection [4], a process that 

aims at evaluating existing products and selecting the one that best fits the requirements. 

In the so called buy-and-adapt approach [3], the selected COTS, although has the best fitness, 

would still have many mismatches with the requirements. These mismatches occur as a result of an 

excess or shortage of COTS features1.  Such mismatches are inevitable as COTS products are 

made for broad use while system requirements are specific to their context [10,11]. As many of 

these mismatches as possible are resolved after the selection.  

We argue that in the COTS selection process, the selection decision should be based on the 

anticipated fitness of COTS candidates if their mismatches are resolved. However, due to the fact 

that there are usually limited resources (i.e. effort and budget) for resolving these mismatches, 

we typically can only resolve a subset of all COTS mismatches. Resolving different subsets of 

mismatches will have different impacts on the COTS fitness. The question is, what is the ‘right’ 

subset of mismatches that should be addressed under the given resource constraints? This subset 

has to be identified when comparing the COTS candidates so as to estimate their anticipated-

fitness values, and thus make appropriate COTS-selection decisions. 

In addition, it is not enough to only identify the right mismatches, but also to apply the right 

resolution actions. Alternative resolution actions can be used with each mismatch. Different 

resolution actions require different amounts of resources, and impose different risks on the 

system. The question is, what is the right set of resolution actions that should be chosen such that 

the right mismatches are resolved, with the least risk, and within the given resource constraints? 

                                                           

 
1 The term ‘mismatch’ as used in this paper should not be confused with other types of mismatches such as architectural 
mismatches, which are encountered between different parts integrated together in a software system [5-9]. 



This problem gets more and more complex as the number of mismatches and their alternative 

resolution actions increase. For some projects, inefficient decisions might not only affect the 

functionality and quality of the final system, but might also result in serious consequences such 

as losing market share. Therefore, we suggest the use of decision support techniques [12] to 

address this problem.  

Decision support is a proven means to assist humans to make decisions in case of semi-

structured or unstructured problems encountering incomplete or uncertain information. The 

paradigm of decision support suggests the pro-active evaluation of decision alternatives and aims 

at providing the best knowledge available to the decision maker to make more informed, 

transparent and effective decisions. 

This paper tries to address the COTS mismatch problem by providing support to decision 

makers when selecting COTS products. The selection is done based on pro-active analysis of the 

impact of mismatch handling. Mismatch handling is the process in which mismatches and their 

resolution actions are analyzed; and a selected set of mismatches is resolved using certain 

resolution actions. For that, the paper presents MiHOS (Mismatch Handling for COTS 

Selection), an approach that can be integrated into existing COTS selection methods to support 

handling mismatches. MiHOS has two objectives that may be realized during and after the 

selection process: 

Objective_1 (During COTS selection): MiHOS is used to estimate the anticipated fitness of 

candidates if the right mismatches for each candidate are resolved.  

Objective_2 (After COTS selection):  MiHOS is used to help plan the resolution of the right 

mismatches for the selected COTS using the right set of resolution actions. 

MiHOS follows an iterative and evolutionary decision-support framework called EVOLVE* 

[13]. Instead of providing only one solution to decision makers, MiHOS suggests a portfolio of 

qualified and structurally diverse solutions [14]. The decision makers are then invited to explore 

and analyze these solutions, and then they can either accept one solution, or refine the problem 

model and regenerate further refined solutions. This kind of interactive decision support allows 

decision makers to have more participation in and control over the decision making process.  

This paper consists of six sections. In Section 2, a short overview of COTS selection and 

mismatch handling is given. Section 3 illustrates MiHOS, while section 4 describes a case study 

in the e-services domain. Section 5 gives the limitations of applicability. Finally, section 6 

provides conclusions and suggestions for future research. 

2. COTS Selection and Mismatch Detection 

2.1. COTS-Based Development Process 

Although the scope of this paper does not cover the full life cycle of the COTS-Based 

Development (CBD) process, it is necessary to understand the process of CBD in order to 

position the presented work. Overall, CBD includes five phases [15,16]: 
1. Requirements Engineering, which defines the desired capabilities and constraints, and helps 

establishing the COTS evaluation criteria.  
2. COTS Selection, which ensures selecting COTS products thatbest fits the system 

requirements. This activity is described in the next section (Section 2.2). 
3. COTS Tailoring, which involves customizing the COTS product to address unsatisfied (or 

partially satisfied) requirements. This activity is described in the next section. 
4. COTS Integration, which is the process of assembling a set of selected COTS products and 

components together to produce a system.  
5. System Evolution, which includes maintenance issues such as updating the system with new 

COTS releases, adding new functionality to the system, and fixing errors.  



How does MiHOS, the proposed approach, fit into the above CBD model? MiHOS is a 

method that supports the process of single ‘COTS Selection’, and at the same time investigates 

the impact of ‘COTS Tailoring’ on the selection process. MiHOS also helps human experts plan 

for ‘COTS Tailoring’ after the selection process. On the other hand, MiHOS relies on existing 

methods such as PORE [4] for performing the ‘Requirements Engineering’ activity. Lastly, 

MiHOS does not address ‘COTS Integration’ or ‘System Evolution’. 

2.2. The General COTS Selection Model 

Several approaches have been proposed to model the COTS selection process; e.g. OTSO[17], 

CAP [18], and IQMC [19]. Although there is no generally accepted method for COTS selection 

[12], all methods share some key steps that might be iterative and overlapping. These steps 

formulate what we refer to by the general COTS selection model:  
Step 1:  Define evaluation criteria based on system requirements. 
Step 2:  Search for COTS products. 
Step 3:  Filter search results based on a set of must-have criteria & define a shortlist of products. 
Step 4:  Evaluate COTS candidates in the short list. 
Step 5:  Analyze evaluation data and select the best-fit COTS.  

As described in the CBD model (Section 2.1), the selected COTS is tailored in order to 

resolve as much as possible of its mismatches with the requirements. However, it is not clear in 

existing COTS selection methods how the mismatches of COTS candidates influence the COTS 

selection decision at Step 5, especially when limited resources prevent the resolution of all 

mismatches. Resolving COTS mismatches, as stated by Vigder et al [3], can be realized by:  

 Add-ons: to acquire additional add-ons that adds functionality to the COTS product.  

 Scripting: to write custom code using a scripting language supported by the COTS product. 

Examples of such scripting languages include JavaScript, VisualBasic, and Perl. 

 API: to develop a controlling program that calls COTS functions using its API interface. 

 Modifying source, to modify the COTS source code if available. This is a risky action because 

of several maintenance issues [20-22] 

To decide which mismatches are to be resolved using which actions, several factors should be 

considered: (a) the impact of different mismatches on the COTS-fitness, and (b) the effort, cost, 

and risk of alternative resolution actions for each mismatch. In addition, the application of the 

selected set of resolution actions should not exceed available project resources. 

2.3. Detecting Mismatches in MiHOS 

MiHOS suggests to hierarchically define the COTS-selection criteria using goals [23]. MiHOS 

defines two types of goals: strategic goals and technical goals. Strategic goals refer to high level 

requirements that cannot be directly measured in the COTS, i.e. by measuring the performance of 

one functional attribute of the COTS. Each strategic goal is decomposed into more refined goals 

(see Figure 1). The decomposition process continues until defining goals that are at the same 

level of granularity of COTS features. We refer to goals at this level as "technical goals” which 

represent measurable criteria. The result is a goal graph   that addresses stakeholders’ strategic 

needs at the strategic levels, and maps to COTS features at the technical level.  

COTS evaluation is done by comparing the COTS features with the technical goals in 1-to-1 

relationships. The evaluation score is represented by a matching level (ML) [24] which indicates 

different levels of satisfaction of technical goals by corresponding COTS features. ML might be 

estimated on different scales, but eventually ML value is normalized to the range from 0 to 1; 1 

indicates full satisfaction of the technical goal by the COTS feature, and 0 no satisfaction.  



It is worth mentioning that COTS selection as performed in MiHOS is performed using a 

simple weighing and aggregation method. The relative weights of the technical goals are 

computed (as described in the next section). Then, the ML values are multiplied by the weights, 

and the weighted scores are summed. 

Figure 1 goes here! 

A mismatch mi occurs between a COTS feature fi and a technical goal gi when fi ≠ gi. A 

mismatches mi can be classified into one of five types [24]:  

1. ZeroMatch: a COTS product fails to satisfy a technical goal. 

2. PartialMatch: a COTS feature partially satisfies a technical goal. 

3. Surplus: a COTS has extra feature that is not required.  

4. OverMatch: a COTS feature exhibits more capability than required. 

5. Equivalence: a COTS feature contributes to achieving the strategic goal behind a required 

technical goal, but does not match the technical goal itself. 

3. MiHOS: A Proposed Approach to Handle COTS Mismatches 

MiHOS is a three-phase approach that allows decision makers to interactively participate in 

and have more control over the decision making process. The kernel of MiHOS is a formal 

model of the mismatch handling problem. This formal model is described in Section 3.1; and 

then MiHOS is described in details in Section 3.2.2.  

3.1. Mismatch Handling: A Formal Model 

Suppose a COTS has a set of mismatches {mi : i=1 to } with the technical goals {g1,g2,…,g}. 

The key aspects of the formal model are described in the next two subsections (see Table 1). 

3.1.1. Problem Characteristics 

a) Relative Importance of Technical-Goals 

Consider a mismatch mi that exists between a COTS feature and a technical-goal gi. This 

technical-goal is at the leaf level of a hierarchical graph which consists of Y levels of strategic-

goals Gi,y: y=1 to Y. Now, assume gi is assigned a weight of importance i; and Gi,y is assigned a 

weight of importance equals to iy. Then for a uniquely defined path [gi , Gi,Y] between the 

nodes gi and Gi,Y, the relative importance i of the node gi with respect to Gi,Y is obtained by 

multiplying all weights of the arcs along (see Figure 2):  
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In case there is more than one path from a technical-goal to the highest-level strategic-goal, 

then the path resulting in the maximum relative importance is considered. 

Figure 2 goes here! 

b) Mismatch Amount 

For a mismatch mi between a COTS feature fi and a technical goal gi,  the amount of 

mismatch, Amounti, can be estimated by measuring how much fi fails to satisfy gi;  

Amounti = 1 – MLi , where MLi is the matching level between fi and gi. 

Table1 goes here! 

c) Decision Variables 

Assume that for each mismatch mi we identified a set Ai of J possible resolution actions,  

Ai = {ai,1, ai,2, …, ai,J} 



For instance, if the mismatch mi indicates that a required functionality is not supported by a 

COTS, then Ai will include possible ways to tailor this COTS so as to support this functionality; 

e.g. Ai={“tailor by custom-code”, “tailor by add-ons”, …}. In MiHOS, the goal is to select one 

resolution action ai,j for each mismatch mi. This is described by the set of decision variables  

Xi = {xi,1, xi,2, …, xi,J} 

where xi,j=1 if the resolution action ai,j is chosen to resolve the mismatch mi, and xi,j=0 otherwise. 

This means if a mismatch mi is to be resolved using action ai,1, then Xi={1,0,0,…,0}; and if ai,2 is 

to be used, then Xi = {0,1,0,0,…,0}, and so on. 

Note that for the set Ai, we define each resolution action aijAi to be sufficient to completely 

resolve mi. Therefore, we are constrained by choosing only one resolution action to resolve each 

mi, This constraint is represented by, j  xij  1. In case a mismatch mi is tolerated, no resolution 

action is chosen, and thus Xi = {0, 0, … , 0}.  

d) Constraints 

There are two types of constraints considered by MiHOS: resource constraints and pre-

assignments: 

Resource Constraints: Applying resolution actions requires different resources. Each resource 

has a maximum capacity that should not be exceeded. Assume we have T resource types, and a 

capacity Capt for each resource type t. Every action aij uses an amount Usageijt of resource t. 

Thus, the total amount of resources consumed by the selected set of resolution actions 

(represented by decision variables xij) must be less than the total capacity of these resources,  

(t): i,j xij ∙ Usageijt    Capt 

For this paper, we consider two types of resources: available_budget and available_effort. The 

method remains applicable also if more constraints are defined. That is, we assume each 

resolution action ai,j requires an effort equal to efforti,j and costs an amount of costi,j. The total 

effort and budget consumed by the selected resolution actions must be less than the available 

resources. Thus, the above equation can be broken into the following two equations: 

i,j   xi,j ∙ efforti,j    available_effort 

i,j   xi,j ∙ costi,j    available_budget 

Pre-assignments: The user has the option to pre-assign a certain mismatch to be either 

"resolved" or "tolerated" before running the model. If mi is pre-assigned to be resolved, then the 

model must select exactly one resolution action to apply. In this case, the sum of decision 

variables related to all resolution actions Ai applicable to mi must equal to 1 (i.e., j xij = 1). On 

the other hand, if a mismatch mi is to be tolerated, then no resolution actions should be suggested 

for it (i.e.,j xij=0). 

e) Technical Risk 

We assume applying each resolution action aij imposes a technical risk equal to rij. The 

technical risk is estimated based on: (i) Failure risk: the risk that the developers might fail to 

apply the action ai,j, and (ii) Instability risk: the risk that an action ai,j would cause instability of 

the target system. Both (i) and (ii) may be estimated on a 9-point ordinal scale {1,3,5,7,9}; this 

indicates very low, low, average, high, and very high risk. Even numbers can be interpreted as 

intermediate values. Assuming equal distance between the 9-point scale, the technical risk can be 

estimated from the formula, rij =  ∙ FailureRisk ij +  ∙ InstabilityRisk ij, where:  +  =1;  

and  indicate the relative importance of the two types of risks, and are defined by experts. In our 

work, both types are of equal importance, and thus we use  ==0.5.  



f) Stakeholders 

In many cases, several stakeholders are involved in the estimation process of "the goals' 

relative importance" and "the technical risk of resolution actions". Assume we have a set S of K 

stakeholders abbreviated by S = {sk: k=1 to K}. The degree of importance of each stakeholder sk 

is determined by the relative importance k  {1, 3, 5, 7, 9}; this indicates very low, low, 

medium, high, and very high importance respectively. Even numbers (e.g. k =2, 4, 6, and 8) 

indicate a refinement of values above and below. We use a 9-point ordinal scale to allow 

sufficient differentiation between stakeholders' degrees of importance.  

For aggregating different stakeholders' estimations, we use a weighted average function: (i) If 

each stakeholder sk estimated a relative importance ik for a goal gi, then the overall relative 

importance is i = k k ∙ i,k. (ii) If sk estimated a technical risk rijk for a resolution action aij, 

then the resultant technical risk is determined by ri,j = k k ∙ ri,j,k. 

3.1.2. Objective Function 

The objective function brings together the problem facets described so far in Section 3. 

Typically, planning for mismatch handling aims at: (i) Maximizing COTS fitness, (ii) 

Minimizing risk for resolution of mismatches, and (iii) Fulfillment of resource constraints. 

Point (i) is influenced by the goals’ relative importance i and the mismatch amounts 

Amounti, point (ii) is influenced by the technical risk rij of selected resolution actions, and point 

(iii) is relevant to the resource consumptions and constraints. The proposed objective function 

brings these aspects together in a balanced way. The objective is to maximize function F(x) 

subject to the satisfaction of the above constraints. F(x) is given as: 

F(x) = k ( Amounti ∙ i ∙ j (xi,j ∙ ri,j) ) 

Where Δri,j = 10 - ri,j indicates how safe an action aij is. We use Δrij instead of rij because 

maximizing F(x) should yield the minimum risk (i.e. the maximum safety) of selected actions. 

3.2. MiHOS in Action 

3.2.1. Generating Alternative Solutions 

Qualified Solutions: The above formal model constitutes an optimization problem that could be 

solved by optimization packages. We used a package called LINGO [25]. As most optimization 

packages, LINGO is designed to provide one optimal solution at a time for each instance of the 

problem. However, for decision-making under uncertainty, having a set of near-optimal (or 

“qualified”) solutions is more relevant than having just one [14]. As discussed below, MiHOS 

provides a portfolio of five qualified solutions. Each solution represents a plan that suggests a 

strategy for resolving a subset of COTS mismatches. The motivation of offering five plans to the 

decision maker instead of only one is that it allows addressing implicit and additional concerns 

not formally described in the original problem statement. In fact, the quality of the five solutions 

is very similar, but they may differ in terms of their ability to accommodate additional concerns.  

MiHOS generates the qualified solutions as follows: Assume that LINGO2 identifies an 

optimum solution X0 with the maximum possible objective function value equal to F(X0). We 

define a qualified solution as any near-optimum solution X* that possesses two characteristics: 

(i) X* lies in the feasible space delimited by the problem constraints, and (ii) F(X*) F(X0), 

where  is a predefined quality level, and   (0,1]. In MiHOS, we choose the quality level 

                                                           

 
2 Although in this section we describe our diversification algorithm as applied in MiHOS using LINGO, the 

algorithm could be implemented using any other optimization packag. 



=0.95 in order to address the uncertainty involved when defining the values of problem 

parameters. Requiring higher accuracy would make little sense with such uncertainty.  

Diversified Solutions: The generated alternative solutions should also be significantly different; 

otherwise they are not really alternatives. A strategy that tries to achieve diversification was 

introduced in  [14]. This strategy tries to simplify the problem by searching only a subset of the 

feasible space for the most diversified solutions. However, this strategy does not guarantee the 

identification of the solutions with the maximum diversification among the whole feasible space. 

In our approach, we developed another diversification algorithm that tries to increase the level 

of diversification incrementally:  

1. Apply LINGO to the original problem formulation to obtain an optimal solution X0 

2. Set  = 1.   represents the number of structural differences that any two plans in the final 

solution should have.  

3. The algorithm then tries to find four qualified solutions having  structural differences by 

adding more and more constraints to the problem formulation to ensure diversification:  

a. LINGO is asked to search for a solution X1 that is qualified (i.e. =0.95) and satisfies the 

constraint: “X1 must have exactly a number of  structural differences with X0”.  

b. Then LINGO is asked to search for another qualified solution X2 such that it satisfies two 

constraints: “X2 must have  differences with X0,” and “X2 must have  differences with X1.”  

c. Similarly, the algorithm repeats (i) and (ii) to get X3 and X4.  

4. In steps (i) through (iii), if LINGO could find all four solutions, then these solutions as well as 

X0 are stored in the final solution set SOL = {X0, X1, X2, X3, X4 }.  

5.  is incremented, and step 3 is repeated with the new value of . The algorithm keeps 

incrementing  until LINGO fails to solve the problem. When this happens, then the last 

successfully saved set SOL becomes the required portfolio of solutions. 

Our algorithm has the advantage of searching the whole set of qualified solutions for 

maximally diversified solutions. However, our strategy assumes equal distances between the 

diversified solutions, which still does not guarantee maximum diversification because in reality 

the distance between the diversified solutions might vary. Yet the diversification obtained from 

our strategy is very close to the maximum because LINGO searches the whole set of qualified 

solutions, and keeps trying to find solutions with larger diversification until failing to do so.  

In addition, our strategy takes more time than the strategy proposed in [13] – about three to 

six times longer. Nevertheless, in the case of generating only one set of five alternative solutions, 

the increase in time would only be in terms of seconds or few minutes, depending on the speed 

of the computer used in solving the problem and the size of the problem.  

Note that our diversification strategy might fail in very rare (unrealistic) cases. For example: 

if the resource constraints are very low and can only resolve one mismatch, and in the qualified 

solution space there are no five mismatches that the strategy can pick under the given resource 

constraints. This is obviously an unrealistic case because MiHOS should only be used when we 

have many mismatches and the resource constraints, although limited, are sufficient to resolve 

more than one mismatch.  

3.2.2. A Hybrid Approach for Mismatch-Handling during COTS Selection 

The above process of solutions generation is applied in MiHOS in a 3-phase process. Before 

describing the details of this process, we will give the big picture of how MiHOS is integrated 

into the general COTS selection (GCS) process described in Section 2.2. MiHOS generates a set 

of plans which are used to generate two outputs (Figure 3): 



Output1, the anticipated fitness of COTS candidates if these plans are used to resolve the COTS 

mismatches. This output is fed to Step 5 of the GCS model to help selecting the best-fit 

COTS based. This output is used to realizing Objective_1 of MiHOS as discussed earlier. 

Output2, a portfolio of mismatch-resolution plans. This output is fed to the COTS tailoring step 

of the GCS model to help resolving the mismatches of the selected COTS.  This output is 

used to achieve Objective_2 of MiHOS. 

Figure 3 goes here! 

In order to generate the above two outputs, MiHOS follows a framework called EVOLVE* 

[13] that provides decision support using hybrid intelligence that brings computational and 

human intelligence together. The computational part of MiHOS is used to solve the formal 

model of the problem and to generate a set of qualified solutions with maximum diversification 

as described earlier. The decision makers are then invited to analyze these solutions and either 

accept one of them, or refine the formal model based on their knowledge which evolves through 

successive iterations. Such iterative and evolutionary approach allows addressing the wicked and 

uncertain character of the problem. This process is realized in three phases: Modeling, 

Exploration, and Consolidation (see Figure 4). 

Figure 4 goes here! 

(1) MODELING 

The modeling phase aims at describing the settings of the mismatch problem to be suitable for 

the format given in Section 3. This includes three main tasks: 
1. Identify mismatches and resolution actions: For each COTS candidate, identify: the set of 

mismatches mi and the applicable resolution actions Ai, the technical risk rij associated with 
each resolution action aij, and the resources (i.e. effortij and costij) required for each 
resolution action aij. Estimating the effort and cost using combination of expert judgment 
with formal models (e.g. [26]) has proven promising [27]. 

2. Identify relative goal importance: This task includes estimating the relative importance i of 
each technical-goal gi that has a mismatch mi with a COTS feature. 

3. Estimate constraints: This task includes estimating both available resource constraints as 
well as performing any pre-assignments for mismatches resolution. 

(2) EXPLORATION 

In this phase, the solution space is explored, and a set of alternative qualified solutions (plans) 

with maximal diversification is generated as discussed earlier (Section 3.2.1). To explain the 

structure of the resolution plans, consider a COTS having a set of mismatches {m1,m2,…,m }. A 

mismatch-resolution plan Y is represented by the set {y1 ,y2,…,y}, where for each mismatch mi, 

a suggestion yi may take one of the following values:  

 yi = “Do not resolve mi”. All decision variables xi,j are set to zero; no resolution action is used. 

 yi = “Resolve mi using action ai,1”. Only xi,1 =1 while xi,j = 0 otherwise; i.e. Xi ={1, 0, 0,…, 0}. 

 yi = “Resolve mi using action ai,2”. Only xi,2 =1 while xi,j = 0 otherwise; i.e. Xi ={0, 1, 0,…, 0}. 

 … 

 yi = “Resolve mi using action ai,J”. Only xi,J =1 while xi,j = 0 otherwise; i.e. Xi ={0, 0, 0,…, 1}. 

Based on the five generated plans, the two outputs of MiHOS are generated as follows: 

For Output1: The anticipated fitness of a COTS candidate is estimated in three steps:  

1. MiHOS assumes that the first mismatch-resolution plan is applied, and the mismatches are 

resolved as it suggests. 
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2. Having the assumption in (1), MiHOS recalculates the fitness of COTS candidates using the 

weighing and aggregation method described in Section 2.3. 

3. MiHOS repeats (1) and (2) for the remaining four mismatch-resolution plans. The overall 

anticipated fitness is the average of the five fitness values obtained in these three steps: 

5
_ 5...1  n n applied is Y  plan assuming fitness dAnticipate

FitnessdAnticipate  

Where Yn is a mismatch-resolution plan generated by MiHOS, Yn = { y1, y2, …, y} 

For Output2: The second output of MiHOS is the same five mismatch-resolution plans 

originally generated with the aid of LINGO [25]. These plans are given to decision makers so 

that they select the one that best suit their interests. 

(3) CONSOLIDATION  

In this phase decision makers review the output of the exploration phase. They might then 

refine the problem settings as necessary and go to the next iteration. 

For Output1: after evaluating COTS products, MiHOS' consolidation phase enables decision 

makers to perform what-if analysis to examine the impact of 'changing the problem settings' on 

the 'anticipated fitness’ of different COTS candidates. For example, decision makers might want 

to compare COTS candidates if all mismatches related to security are resolved. This is done 

using the "pre-assignment" feature of our model. Decision makers can then analyze COTS 

candidates based on their 'anticipated security scores' as well as their 'anticipated overall scores'. 

For Output2: when trying to resolve mismatches of the selected COTS product, MiHOS' 

consolidation phase enables decision makers to extensively review and analyze the alternative 

plans suggested in the exploration phase. The decision makers then have the choice either to 

accept one of the plans, or refine the problem settings and go to the next iteration. During each 

iteration, decision makers' knowledge evolves and more refinement of the underlying model 

occurs. The iterations continue until a desirable solution alternative is found. 

4. Case Study 

To illustrate the proposed method, we use a real-world case study from the e-services domain. 

The aim of the case study was to acquire a content management system (CMS) for creating an e-

business solution. CMS are used to facilitate the creation of news portals using managed contents 

(i.e. text, images, videos, etc). Due to the page limitation, we briefly describe the main results 

from the case study in this paper, while full details are given in [24,28]. 

Initially, a set of 275 goals were defined to represent system needs at different levels of 

abstraction. From these, 153 goals were defined at the technical-goals level. The COTS market 

was searched, and a subset of 30 must-have technical-goals was used to define a shortlist of five 

COTS candidates using progressive filtering [4]. All candidates had mismatches with different 

mismatch amounts. On the other hand, the system resources for resolving selected COTS 

mismatches were estimated as: available_effort=60 person-hours, available_budget= $2000.  

4.1. Results for Objective_1: Applying MiHOS during COTS Selection 

MiHOS was applied to estimate the average anticipated fitness for COTS candidates after 

resolving the right mismatches. The average is based on the five qualified plans suggested by 

MiHOS. The differences between the anticipated fitness in these plans did not exceed ±1%. On 

the other hand, some mismatches were pre-assigned to be resolved due to their criticality while 

others were pre-assigned to be ignored because no applicable resolution action was found.  

Table 2 compares COTS selection with and without the use of MiHOS. The fitness-values in 

column2 (i.e. without using MiHOS) was calculated using the weighing-and-aggregation method 
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discussed in Section 2.2, and the values in columns 3 to 5 (i.e. after using MiHOS) were 

calculated using the method discussed in the exploration phase in Section 3.2.22.  

If MiHOS was not used, COTS2 might have been selected due to its high fitness value 

(column2). However, MiHOS was applied in several iterations, during which we explored 

various scenarios of applying small adjustments to the problem constraints. Eventually, it was 

found that both COTS4 and COTS5 have an anticipated-fitness value (column3) higher than 

COTS2. Yet, it was difficult to choose between COTS4 and COTS5 as we could not rely on the 

accuracy of such a small difference between their anticipated-fitness values. It was then decided 

to re-apply MiHOS and investigate the scenario if the mismatches related to the security goal of 

the COTS candidates are resolved – this was done using the pre-assignment constraint (refer to 

MiHOS’ formal model in Sect. 3.1.1(d)). The new results showed that COTS4 is the best choice 

since it showed the best anticipated overall anticipated fitness (column4) with the maximum 

anticipated security (column5). Consequently, we decided to select COTS4 as the best-fit one. 

Table2 goes here! 

4.2. Results for Objective_2: Applying MiHOS after COTS Selection 

After selecting COTS4, we wanted to choose the best plan to solve its mismatches. The same 

estimates used before for MiHOS’ Objective_1 are reused here again (i.e. mismatch amount, 

effort, etc). The plans suggested by MiHOS for resolving COTS4’s mismatches are analyzed 

more extensively to choose the best one. In more details, COTS4 had an overall of 64 mismatches 

between its features and the technical-goals. The set of 95% qualified solutions were explored 

and the most diversified five solutions were identified (see Table 3) 

In Table 3, the rows show alternative plans, while the columns refer to different mismatches. 

The cells containing ‘x’ suggest tolerating relevant mismatches, while other cells suggest solving 

relevant mismatches mi using actions aij. The last four columns show the evaluation of the 

suggested plans. As can be seen, these five suggested plans have a consensus on the majority of 

resolution-actions. Therefore, we felt more confident to use those actions. One the other hand, 

we focused our analysis on the differences between the suggested plans. All alternative plans 

were reasonable, and eventually Alt1 was adopted as it required the least amount of resources. 

Table3 goes here! 

5. Limitations  

As in the case with any approach, the quality of MiHOS’ results relies on the quality of the 

input data. In order to reduce the uncertainty in the input data, we use an evolutionary and 

iterative approach so as to refine the input values based on expert's feedback after analyzing the 

output. MiHOS generates a set of near-optimal solutions being structurally diversified instead of 

only one 'best' solution. Having such tolerance when accepting qualified solutions minimizes the 

effect of inaccuracies in input values. A similar approach that uses comparable techniques has 

proven promising in the area of software release planning [13,14]. 

Also, MiHOS requires extra effort to apply. The total effort required in the case study was 

256 person-hours: 96 person-hours for running MiHOS activities (37.7%), and 160 person-hours 

(62.3 %) for running other activities in the general COTS selection model (i.e. criteria definition, 

searching for COTS, etc). However, we argue that the extra effort needed for applying MiHOS 

during and after the selection process is more helpful and less risky than acting reactively if 

problems occur. We suggest using MiHOS in big projects in which inefficient decisions would 

have critical consequences, e.g. related to finances or human safety. We also recommend 

applying MiHOS during the selection process only after having a small set of the most promising 

COTS candidates so as to reduce the effort required for defining the problem settings. However, 
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once the problem settings are defined, it is very easy and almost effortless to re-run MiHOS 

several times so as to explore different scenarios of the problem. For example, in our case study 

the scenario "evaluate COTS candidates if their security-score is maximized" was done in no 

time, and yet yielded important information that significantly affected our decision. 

In addition, MiHOS is currently dedicated for single COTS selection. Also, MiHOS is not 

designed to handle mismatches related to non-functional requirements (NFR). This problem 

arises from the difficulty of estimating the effort/cost for achieving a specific target level by 

solving such mismatches. Although in our case study, MiHOS was able to deal with several 

NFRs (e.g. security), applying it to some other NFRs (e.g. reliability) would be difficult. 

6. Summary and Outlook 

We proposed MiHOS, a decision-support approach that can be integrated with most existing 

COTS selection methods at two points: (1) when evaluating the most promising COTS products 

in order to estimate the anticipated fitness if the right mismatches are resolved for each COTS; 

and (2) after selecting a COTS in order to help planning the resolution of the right mismatches 

using appropriate resolution-actions. MiHOS takes into consideration factors such as the impact 

of a mismatch on COTS fitness, and the cost, effort and risk of resolution actions. The case study 

showed the significance of using MiHOS in qualifying the COTS-selection decisions.  

Despite the limitations in Section 5, the structure of MiHOS is of high extensibility to address 

more complex problems. For example, instead of considering the overall-effort for applying 

resolution-actions, the formal model can be easily modified to address more refined types of 

effort; e.g. development, testing, and documentation efforts. This differentiation between effort 

types is necessary when having different teams in the project with different effort constraints.  

Also, instead of assuming that each mismatch is resolved by only one resolution-action, the 

formal model can be modified to consider several resolution actions that together can solve one 

or more mismatches. This can be done by adding some technological constraints that define the 

dependencies between resolution-actions.  

We are also working on exploring the use of ‘linear-combination’ for formulating the 

objective function, and comparing the results to the current objective function. Linear 

combination might be useful to conduct more complex ‘what-if’ analysis. This increases the 

customizability of the objective function towards experts' preferences.  
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Table 1 Input parameters of MiHOS 

 

 

 

Table 2 Analyzing COTS candidates before and after applying MiHOS 

 
Fitness without  
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After resolving the ‘right-mismatches’ identified by MiHOS 

 
Anticipated fitness 
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with max security 

Security 

(BeforeAfter) 

COTS1 63 % 78 % 68 % 84%  100% 

COTS2 75 % 82 % 81 % 86%  92 % 

COTS3 61 % 73 % 70 % 70%  77.9% 

COTS4 68 % 92 % 91 % 72%  100% 

COTS5 53 % 90 % 69 % 58%  95% 
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Table 3 Suggested resolution plans for COTS4 
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